1. WHO/FAO (World Health Organization/Food and Agriculture Organization of the United Nations), Vitamin and mineral requirements in human nutrition: report of a Joint FAO/WHO Expert Consultation. 2004: Bangkok, Thailand. p. 246-271.
2. Camaschella, C., Iron-Deficiency Anemia. New England Journal of Medicine, 2015. 372(19): p. 1832-1843.
3. Lynch, S., et al., Biomarkers of Nutrition for Development (BOND)-Iron Review. J Nutr, 2018. 148(suppl_1): p. 1001S-1067S.
4. EFSA Panel on Dietetic Products, N. and Allergies, Scientific Opinion on Dietary Reference Values for iron. EFSA Journal, 2015. 13(10): p. 4254.
5. IOM (Institute of Medicine), Dietary Reference Intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. 2001, National Academy Press: Washington, DC, USA. p. 797.
6. Collings, R., et al., The absorption of iron from whole diets: a systematic review. Am J Clin Nutr, 2013. 98(1): p. 65-81.
7. Hurrell, R. and I. Egli, Iron bioavailability and dietary reference values. Am J Clin Nutr, 2010. 91(5): p. 1461S-1467S.
8. Patterson, C.A., J. Curran, and T. Der, Effect of Processing on Antinutrient Compounds in Pulses. Cereal Chemistry, 2017. 94(1): p. 2-10.
9. Shi, L., S.D. Arntfield, and M. Nickerson, Changes in levels of phytic acid, lectins and oxalates during soaking and cooking of Canadian pulses. Food Res Int, 2018. 107: p. 660-668.
10. Hurrell, R.F., M. Reddy, and J.D. Cook, Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br J Nutr, 1999. 81(4): p. 289-95.
11. Petry, N., et al., Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr, 2010. 140(11): p. 1977-82.
12. Ahmad Fuzi, S.F., et al., A 1-h time interval between a meal containing iron and consumption of tea attenuates the inhibitory effects on iron absorption: a controlled trial in a cohort of healthy UK women using a stable iron isotope. Am J Clin Nutr, 2017. 106(6): p. 1413-1421.
13. Schlesier, K., et al., Comparative evaluation of green and black tea consumption on the iron status of omnivorous and vegetarian people. Food Research International, 2012. 46(2): p. 522-527.
14. Lonnerdal, B., Calcium and iron absorption–mechanisms and public health relevance. Int J Vitam Nutr Res, 2010. 80(4-5): p. 293-9.
15. Hallberg, L., et al., Calcium: effect of different amounts on nonheme- and heme-iron absorption in humans. Am J Clin Nutr, 1991. 53(1): p. 112-9.
16. Bendich, A., Calcium supplementation and iron status of females. Nutrition, 2001. 17(1): p. 46-51.
17. Beck, K.L., et al., Dietary determinants of and possible solutions to iron deficiency for young women living in industrialized countries: a review. Nutrients, 2014. 6(9): p. 3747-76.
18. Heath, A.L., et al., The role of blood loss and diet in the aetiology of mild iron deficiency in premenopausal adult New Zealand women. Public Health Nutr, 2001. 4(2): p. 197-206.
19. Teucher, B., M. Olivares, and H. Cori, Enhancers of iron absorption: ascorbic acid and other organic acids. Int J Vitam Nutr Res, 2004. 74(6): p. 403-19.
20. Siegenberg, D., et al., Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr, 1991. 53(2): p. 537-41.
21. Cook, J.D. and M.B. Reddy, Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. Am J Clin Nutr, 2001. 73(1): p. 93-8.
22. Scientific Advisory Committee on Nutrition, Iron and Health. 2010: London: TSO.
23. Hunt, J.R., S.K. Gallagher, and L.K. Johnson, Effect of ascorbic acid on apparent iron absorption by women with low iron stores. Am J Clin Nutr, 1994. 59(6): p. 1381-5.
24. Garcia, O.P., et al., Ascorbic acid from lime juice does not improve the iron status of iron-deficient women in rural Mexico. Am J Clin Nutr, 2003. 78(2): p. 267-73.
25. Beck, K., et al., Gold kiwifruit consumed with an iron-fortified breakfast cereal meal improves iron status in women with low iron stores: a 16-week randomised controlled trial. Br J Nutr, 2011. 105(1): p. 101-9.
26. Tabela da Composição de Alimentos (TCA). 2015 [cited 27 March 2021; Available from: http://portfir.insa.pt/.
27. García-Casal, M.a.N., et al., Vitamin A and β-Carotene Can Improve Nonheme Iron Absorption from Rice, Wheat and Corn by Humans. The Journal of Nutrition, 1998. 128(3): p. 646-650.
28. Melina, V., W. Craig, and S. Levin, Position of the Academy of Nutrition and Dietetics: Vegetarian Diets. J Acad Nutr Diet, 2016. 116(12): p. 1970-1980.
29. Baroni, L., et al., Vegetarian diets during pregnancy: effects on the mother’s health. A systematic review. Food Funct, 2021. 12(2): p. 466-493.
30. Alwan, N.A., et al., Dietary iron intake during early pregnancy and birth outcomes in a cohort of British women. Hum Reprod, 2011. 26(4): p. 911-9.
31. Avnon, T., et al., Does vegan diet influence umbilical cord vitamin B12, folate, and ferritin levels? Archives of Gynecology and Obstetrics, 2020. 301(6): p. 1417-1422.
32. Agnoli, C., et al., Position paper on vegetarian diets from the working group of the Italian Society of Human Nutrition. Nutr Metab Cardiovasc Dis, 2017. 27(12): p. 1037-1052.
33. Taylor, A., E.W. Redworth, and J.B. Morgan, Influence of diet on iron, copper, and zinc status in children under 24 months of age. Biol Trace Elem Res, 2004. 97(3): p. 197-214.
34. Desmond, M.A., et al., Growth, body composition, and cardiovascular and nutritional risk of 5- to 10-y-old children consuming vegetarian, vegan, or omnivore diets. Am J Clin Nutr, 2021.
35. Thane, C.W. and C.J. Bates, Dietary intakes and nutrient status of vegetarian preschool children from a British national survey. J Hum Nutr Diet, 2000. 13(3): p. 149-162.
36. Krajčovičová-Kudláčková, M., et al., Influence of vegetarian and mixed nutrition on selected haematological and biochemical parameters in children. Food / Nahrung, 1997. 41(5): p. 311-314.
37. Thane, C.W., C.J. Bates, and A. Prentice, Risk factors for low iron intake and poor iron status in a national sample of British young people aged 4-18 years. Public Health Nutr, 2003. 6(5): p. 485-96.
38. Nathan, I., A.F. Hackett, and S. Kirby, The dietary intake of a group of vegetarian children aged 7-11 years compared with matched omnivores. Br J Nutr, 1996. 75(4): p. 533-44.
39. Gorczyca, D., A. Prescha, and K. Szeremeta, Impact of vegetarian diet on serum immunoglobulin levels in children. Clin Pediatr (Phila), 2013. 52(3): p. 241-6.
40. Donovan, U.M. and R.S. Gibson, Iron and zinc status of young women aged 14 to 19 years consuming vegetarian and omnivorous diets. J Am Coll Nutr, 1995. 14(5): p. 463-72.
41. Dwyer, J.T., et al., Nutritional status of vegetarian children. Am J Clin Nutr, 1982. 35(2): p. 204-16.
42. Ambroszkiewicz, J., et al., Serum Hepcidin and Soluble Transferrin Receptor in the Assessment of Iron Metabolism in Children on a Vegetarian Diet. Biol Trace Elem Res, 2017. 180(2): p. 182-190.
43. Larsson, C.L. and G.K. Johansson, Dietary intake and nutritional status of young vegans and omnivores in Sweden. Am J Clin Nutr, 2002. 76(1): p. 100-6.
44. Pawlak, R. and K. Bell, Iron Status of Vegetarian Children: A Review of Literature. Ann Nutr Metab, 2017. 70(2): p. 88-99.
45. Bakaloudi, D.R., et al., Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin Nutr, 2020.
46. Haider, L.M., et al., The effect of vegetarian diets on iron status in adults: A systematic review and meta-analysis. Crit Rev Food Sci Nutr, 2018. 58(8): p. 1359-1374.
47. Tong, T.Y.N., et al., Hematological parameters and prevalence of anemia in white and British Indian vegetarians and nonvegetarians in the UK Biobank. Am J Clin Nutr, 2019. 110(2): p. 461-472.
48. Gallego-Narbon, A., B. Zapatera, and M.P. Vaquero, Physiological and Dietary Determinants of Iron Status in Spanish Vegetarians. Nutrients, 2019. 11(8).
49. Waldmann, A., et al., Dietary iron intake and iron status of German female vegans: results of the German vegan study. Ann Nutr Metab, 2004. 48(2): p. 103-8.
50. Bindra, G.S. and R.S. Gibson, Iron status of predominantly lacto-ovo vegetarian East Indian immigrants to Canada: a model approach. Am J Clin Nutr, 1986. 44(5): p. 643-52.
51. Anderson, B.M., R.S. Gibson, and J.H. Sabry, The iron and zinc status of long-term vegetarian women. Am J Clin Nutr, 1981. 34(6): p. 1042-8.
52. Haddad, E.H., et al., Dietary intake and biochemical, hematologic, and immune status of vegans compared with nonvegetarians. Am J Clin Nutr, 1999. 70(3 Suppl): p. 586S-593S.
53. Elorinne, A.L., et al., Food and Nutrient Intake and Nutritional Status of Finnish Vegans and Non-Vegetarians. PLoS One, 2016. 11(2): p. e0148235.
54. Reddy, S. and T.A. Sanders, Haematological studies on pre-menopausal Indian and Caucasian vegetarians compared with Caucasian omnivores. Br J Nutr, 1990. 64(2): p. 331-8.
55. Harvey, L.J., et al., Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr, 2005. 94(4): p. 557-64.
56. McCormick, R., et al., Refining Treatment Strategies for Iron Deficient Athletes. Sports Med, 2020. 50(12): p. 2111-2123.
57. Nebl, J., et al., Micronutrient Status of Recreational Runners with Vegetarian or Non-Vegetarian Dietary Patterns. Nutrients, 2019. 11(5).
58. Direção-Geral da Saúde, Norma 030/2013: Abordagem, Diagnóstico e Tratamento da Ferropénia no Adulto. 2013.
59. Kassebaum, N.J., et al., A systematic analysis of global anemia burden from 1990 to 2010. Blood, 2014. 123(5): p. 615-24.
60. Fonseca, C., et al., Prevalence of anaemia and iron deficiency in Portugal: the EMPIRE study. Intern Med J, 2016. 46(4): p. 470-8.
61. Stoffel, N.U., et al., Iron absorption from oral iron supplements given on consecutive versus alternate days and as single morning doses versus twice-daily split dosing in iron-depleted women: two open-label, randomised controlled trials. Lancet Haematol, 2017. 4(11): p. e524-e533.
62. Moretti, D., et al., Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood, 2015. 126(17): p. 1981-1989.
63. Stoffel, N.U., et al., Iron absorption from supplements is greater with alternate day than with consecutive day dosing in iron-deficient anemic women. Haematologica, 2020. 105(5): p. 1232-1239.
64. McCormick, R., et al., The Effectiveness of Daily and Alternate Day Oral Iron Supplementation in Athletes With Suboptimal Iron Status (Part 2). Int J Sport Nutr Exerc Metab, 2020: p. 1-6.